p27KIP1 loss promotes proliferation and phagocytosis but prevents epithelial–mesenchymal transition in RPE cells after photoreceptor damage
نویسندگان
چکیده
PURPOSE p27KIP1 (p27), originally identified as a cell cycle inhibitor, is now known to have multifaceted roles beyond cell cycle regulation. p27 is required for the normal histogenesis of the RPE, but the role of p27 in the mature RPE remains elusive. To define the role of p27 in the maintenance and function of the RPE, we investigated the effects of p27 deletion on the responses of the RPE after photoreceptor damage. METHODS Photoreceptor damage was induced in wild-type (WT) and p27 knockout (KO) mice with N-methyl-N-nitrosourea (MNU) treatment. Damage-induced responses of the RPE were investigated with bromodeoxyuridine (BrdU) incorporation assays, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays at different stages after MNU treatment. Subcellular localization of p27 in the WT RPE was also analyzed in vivo and in vitro. RESULTS MNU treatment induced photoreceptor-specific degeneration in the WT and KO retinas. BrdU incorporation assays revealed virtually no proliferation of RPE cells in the WT retinas while, in the KO retinas, approximately 16% of the RPE cells incorporated BrdU at day 2 after MNU treatment. The RPE in the KO retinas developed aberrant protrusions into the outer nuclear layer in response to photoreceptor damage and engulfed outer segment debris, as well as TUNEL-positive photoreceptor cells. Increased phosphorylation of myosin light chains and their association with rhodopsin-positive phagosomes were observed in the mutant RPE, suggesting possible deregulation of cytoskeletal dynamics. In addition, WT RPE cells exhibited evidence of the epithelial-mesenchymal transition (EMT), including morphological changes, induction of α-smooth muscle actin expression, and attenuated expression of tight junction protein ZO-1 while these changes were absent in the KO retinas. In the normal WT retinas, p27 was localized to the nuclei of RPE cells while nuclear and cytoplasmic p27 was detected in RPE cells undergoing EMT, suggesting a role for cytoplasmic p27 in the phenotype changes of RPE cells. CONCLUSIONS p27 loss promoted proliferation and phagocytic activity of RPE cells while preventing EMT after photoreceptor damage. These findings provide evidence for the role of p27 in the control of RPE responses to retinal damage.
منابع مشابه
Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact.
PURPOSE Molecular mechanisms that initiate epithelial-mesenchymal transition (EMT) involved in ocular fibrotic complications remain elusive. Studies were conducted to examine the role of cell-cell contact in regulating EMT and proliferation of retinal pigment epithelial (RPE) cells. METHODS Porcine RPE cells were isolated as sheets and cultured in vitro on lens capsules. Cell morphology was e...
متن کاملEffect of let-7a overexpression on the differentiation of conjunctiva mesenchymal stem cells into photoreceptor-like cells
Objective(s): MicroRNAs (miRNAs) could regulate many cellular processes such as proliferation and differentiation. let-7a miRNA is one of the key regulators in the developmental transition of retinal progenitor cells into differentiated cells. Current evidence suggests that mesenchymal stem cells (MSCs) can isolate from various tissues such as bone marrow and conjuncti...
متن کاملCrosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...
متن کاملPhotoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis.
Photoreceptor cell (rods and cones) renewal is accompanied by intermittent shedding of the distal tips of the outer segment followed by their phagocytosis in the retinal pigment epithelial (RPE) cells. This renewal is essential for vision, and it is thought that it fosters survival of photoreceptors and of RPE cells. However, no specific survival messenger/mediators have as yet been identified....
متن کاملChloride Intracellular Channel 4 Is Critical for the Epithelial Morphogenesis of RPE Cells and Retinal Attachment
Retinal detachment is a sight-threatening condition. The molecular mechanism underlying the adhesion between the RPE and photoreceptors is poorly understood because the intimate interactions between these two cell types are impossible to model and study in vitro. In this article, we show that chloride intracellular channel 4 (CLIC4) is enriched at apical RPE microvilli, which are interdigitated...
متن کامل